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ABSTRACT: Eurasian snow cover fraction (SCF) prediction is analyzed using the recently developed National Centers
for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) monthly retrospective forecasts for
1983–2009. The CFSv2 is generally capable of reproducing the observed Eurasian SCF seasonal cycle and climatology.
This study focuses on the prediction skill and predictability of Eurasian SCF in snowmelt and snowfall seasons because the
intensive variability occurs in the two seasons. The CFSv2 reasonably predicts the interannual variations, long-term trend and
leading pattern in snowmelt season several months ahead. In comparison with the snowmelt season, the CFSv2 shows a better
prediction skill in climatological values but a worse skill in the interannual variability in snowfall season. In addition, the
forecasted downward trend of SCF in the snowfall season is opposite to that in the observation. The biases of Eurasian SCF
in the snowmelt and snowfall seasons are significantly related with those of temperature and precipitation in the CFSv2. The
forecasted cooler and wetter atmosphere is suggestive of the overestimation of the mean SCF. Meanwhile, the underestimation
in the variability of both temperature and precipitation in the CFSv2 may be the important factor for the underestimated
variability of SCF, especially for the damped variability of SCF in the snowfall season. Generally, the CFSv2 shows a higher
and more stable prediction skill after late-1990s than before in the two seasons. The change in the initial condition in the
CFSv2 and the observed SCF in late-1990s might be the plausible reason for it.
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1. Introduction

Snow is an important element having dramatic effect on the
climatic and hydrologic models, atmospheric circulation
patterns and global heat budget (Barnett et al., 1989; Clark
et al., 1999; Clark and Serreze, 2000; Singh et al., 2007;
Brands et al., 2012; Zuo et al., 2012a; Chen et al., 2013;
Orsolini et al., 2013; Zuo et al., 2014). For example, Gong
et al. (2003) reported that Eurasian snow cover in October
plays an important role on the large-scale atmospheric cir-
culation in mid- and high-latitude through influencing the
interactivity between troposphere and stratosphere. Cohen
and Jones (2011) suggested that the interaction between
snow cover and atmosphere can affect the fundamental cli-
mate in winter and snow cover can be considered as a good
predictor for seasonal climate prediction. Wu and Kirtman
(2007) and Zuo et al. (2012b) reported that the decreasing
Eurasian snow cover in spring is significantly associated
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with the synchronic reducing precipitation in southeastern
China. Zhang et al. (2008, 2013) and Wu et al. (2009)
showed that the spring snow cover over Eurasian continent
had major impact on the decadal variability of summer
rainfall over eastern China.

It is vital for climate models to precisely simulate
the snow process. Recently, the development of coupled
ocean–atmosphere model prediction systems has made
great progress in seasonal climate predictions (Kumar
et al., 2005; Wang et al., 2005; Kug et al., 2008; Mo et al.,
2012). The National Centers for Environmental Prediction
(NCEP) Climate Forecast System version 2 (CFSv2), suc-
cessor of the first CFS, was made operational at NCEP in
March 2011 (Saha et al., 2014). The predictive skills of the
CFSv2 in Madden–Julian Oscillation, El Niño Southern
Oscillation, the tropical Atlantic SST, the Artic Oscilla-
tion and in monsoon precipitation, surface air temperature
and sea ice have been assessed in previous studies (Kim
et al., 2012; Wang et al., 2012; Peng et al., 2013; Riddle
et al., 2013; Wang et al., 2013; Zuo et al., 2013; Hu and
Kumar, 2014; Saha et al., 2014). With the upgraded four
level soil model used in the CFSv2 system (Saha et al.,
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2013), Zuo et al. (2011, 2013) suggested that the CFSv2
is able to simulate some dynamical processes associated
with snow cover. Nevertheless, the detail predictive skill
of the CFSv2 in the Eurasian snow cover still needs to
be further documented. In this study, we evaluate the pre-
diction skill and predictability of the Eurasian snow cover
fraction (SCF) in the NCEP CFSv2 reforecasts. Consid-
ering the small variability of the Eurasian SCF during all
winter months and little snow cover during summer, this
study primarily focuses on the prediction and predictabil-
ity of Eurasian SCF in snowmelt and snowfall seasons. The
paper is organized as follows: Section 2 briefly describes
the CFSv2 reforecasts and observational datasets, as well
as the analysis method. Section 3 presents the general pre-
dictive skill and predictability of Eurasian SCF. Section 4
focuses on the predictive skill in the snowmelt season and
Section 5 focuses on the snowfall season. Section 6 exam-
ines the possible causes for the CFSv2 prediction skill.
Summary and discussion are provided in Section 7.

2. Model, data and methods

The CFSv2 is a fully coupled model which consists of
the NCEP Global Forecast System atmospheric model,
Modular Ocean Model version 4 from Geophysical Fluid
Dynamics Laboratory, an interactive three sea ice model
and Noah land surface model (Saha et al., 2014). The retro-
spective 9-month forecasts of the CFSv2 have initial con-
dition (IC) of the 0, 6, 12, 18Z cycles for every 5 days,
starting from 1 January 0Z of every year for 1982–2010.
This study uses 16 members with 0–8 lead-month (LM)
(i.e. 0, 6, 12, 18Z on 12, 17, 22, 27 March for April pre-
diction for LM0) from the CFSv2 9-month retrospective
SCF (1983–2009) to analyze the prediction skill and pre-
dictability of the Eurasian snow cover. The SCF in the
CFSv2 is derived from the simulated snow depth and is
related with the surface characteristics and snowpack den-
sity (Ek et al., 2003). Also, the 850 hPa, 2-m temperature
and surface precipitation rate from the CFSv2 reforecasts
are used in the analysis of possible causes for the SCF
prediction. The LM0 is referred to as initialized from its
previous month. The IC of the CFSv2 reforecasts is pro-
vided by the NCEP Climate Forecast System Reanalysis
(CFSR), which has been proven superior to the previous
NCEP reanalyses (Saha et al., 2010).

We use the satellite-based SCF dataset provided by
the Rutgers Global Snow Lab to evaluate the prediction
of Eurasian SCF in the CFSv2. The monthly SCF in
the Rutgers Global Snow Lab is based on the weekly
satellite-derived snow cover maps produced weekly by
trained National Oceanic and Atmospheric Administration
(NOAA) meteorologists for 1966–1997 (Robinson et al.,
1993). From 1997 to present, it is changed to base on
the NOAA Ice and Snow Mapping System (IMS) daily
snow charts, with a higher temporal and spatial reso-
lution (Ramsay, 1998). In addition, the air temperature
at 850 hPa from the ERA-Interim and 2-m air tempera-
ture from the Climate Precipitation Center monthly land

surface air temperature observations are used to evaluate
the prediction of atmospheric temperature (Fan and van
den Dool, 2008; Berrisford et al., 2009). Global Precip-
itation Climatology Project (GPCP) version 2.2 monthly
precipitation dataset (Adler et al., 2003), which consists
of precipitation derived from satellite and gauge measure-
ments, is also used as the validation dataset.

The methods in this study include anomaly correlation
coefficient (ACC), root-mean-square error (RMSE) and
spatial correlation. The non-parametric Mann–Kendall
test (Mann, 1945 and Kendall, 1975) is used to detect
significant trend in the time series of spatial correlation.
In addition, the maximized signal-to-noise ratio empirical
orthogonal function analysis (MSN EOF) is used to isolate
the most predictable patterns by maximizing the ratio of
the variances of the ensemble mean and within-ensemble
deviations (Venzke et al., 1999; Huang, 2004; Zuo et al.,
2013).

3. General prediction skill

We first analyze the general prediction skill and pre-
dictability of Eurasian SCF in the CFSv2. Figure 1(a)
exhibits the observed climatological month-to-month
changes of SCF. The positive (negative) value in
each month represents that the snow-accumulation
(snow-ablation) process is dominant during this month.
Thus, September–January refers snowfall months whereas
February–August refers snowmelt months. We further
define the months with month-to-month absolute change
value exceeding 10 (unit: %) as snowmelt/snowfall
season. April–June and October–December represents
snowmelt and snowfall season, respectively. Generally,
Eurasian snow starts to accumulate during October, with
substantial increase during October–December. Then
snow reaches peak and keeps relative stable with maxi-
mum in winter. From April on, snow decreases rapidly,
resulting in little snow cover during June–September
over Eurasia. Figure 1(b) illustrates the seasonal cycle of
Eurasian SCF in the observation and CFSv2 for LM0-8.
The CFSv2 captures the seasonal cycle of Eurasian SCF
reasonably. The CFSv2 for LM0 reproduces the observed
SCF climatology in February–April and July–August
quite well, but a little larger in September–October
and smaller in November–January and May–June.
For longer LMs, the CFSv2 shows different predic-
tion skills, with general less-than-observed SCF in
November–January and more-than-observed SCF in
April–June and September–October. The spread of
model value tends to be greater in snowmelt season than
in snowfall season.

Figure 2 shows the ACC and RMSE for LM0-8 as
a function of target month and LM. The dash line in
Figure 2(a) is the contour exceeding the 95% confi-
dence level (Student’s t-test). It is found that the ACC
in snowmelt months (February–July) is generally signif-
icant for shorter than LM6. In contrast, the ACC in snow-
fall months (September–January) is much smaller for all
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Figure 1. (a) Monthly climatological SCF change (the value of month n refers SCF of month n minus n-1). (b) Climatological SCF in the observation
(black) and CFSv2 forecasts for LM0-8 (coloured curves).
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Figure 2. (a) SCF ACC and (b) RMSE (unit: %) between the observation
and CFSv2 forecasts as a function of target month and LM.

LMs. The RMSE in major snowmelt months (April–June)
varies intensively with LMs and is relatively larger than
that in other months. Overall, the CFSv2 exhibits better
predictable skill in the SCF variations but larger bias and
spread in climatological value in snowmelt months than in
the snowfall months.

The intensive SCF variation generally occurs in the
snowmelt and snowfall seasons and the characteristics of
SCF in the two seasons are quite different. Hereafter,
we primarily focus on the SCF prediction skill in the
two seasons, represented by April and October since the
beginning of extensive snow ablation and accumulation
generally occurs in April and October, respectively.

4. Eurasian SCF prediction and predictability in
snowmelt season

Figure 3 shows the observed climatology of Eurasian SCF
and its differences with the CFSv2 for LM0, LM2 and
LM5 in April (model-observation). As expected, the SCF
increases from south to north, with maximum gradient in
30∘–140∘E, 45∘–65∘N. The SCF is greater than 75% in
north of 60∘N and less than 25% in south of 50∘N except
Tibetan Plateau (TP). Generally, the CFSv2 predicts the
climatological Eurasian SCF with positive biases in the
northeast of China and negative biases in north of TP.
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Figure 3. The mean April SCF (%) during 1983–2009 from (a) Rutgers observation (solid line shows contours of 25, 50 and 75%) and climatological
biases in April SCF (model-observation, unit: %) for (b) LM0, (c) LM2 and (d) LM5. The black dashed rectangles in (a)–(d) represent region of

30∘ –140∘E, 45∘ –65∘N defined as SMKA.

80°N

(a) Obs. CFSv2_LM0(b)

CFSv2_LM5(d)CFSv2_LM2(c)

60°N

40°N

20°N

0 30°E 60°E 90°E 120°E 150°E 0 30°E 60°E 90°E 120°E 150°E

80°N

60°N

40°N

20°N

0 30°E 60°E 90°E

0.1 10 15 25 30 35

120°E 150°E 0 30°E 60°E 90°E 120°E 150°E

Figure 4. Standard deviation of April SCF for (a) Rutgers observation and CFSv2 for (b) LM0, (c) LM2 and (d) LM5. The black dashed rectangle
in (a) is the same as Figure 3.

Over the high latitude of Eurasia about north of 65∘N, the
biases are quite small and vary little with LMs because
of the SCF is always nearly 100%. Noted that these
biases in the domain with maximum gradient (30∘–140∘E,
45∘–65∘N) increase significantly with LMs, which is con-
sistent with Figure 1(b). In the study, we do not investigate
the prediction and predictability in TP because of the poor
quality of the observed SCF dataset here.

The standard deviation of the SCF in the observation
and CFSv2 for different LMs is calculated to evaluate
the predictive skill in the SCF variability (Figure 4).
The maximum variability, greater than 15%, is located
in 30∘–140∘E, 45∘–65∘N where the gradient are largest
(Figures 3(a) and 4(a)) in the observation. The CFSv2
for LM0 shows similar pattern to the observation with
maximum variability in 30∘–140∘E, 45∘–65∘N, but with
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Figure 5. Observed and forecasted (a) SCF and (b) year-to-year SCF variation (the value of year n refers SCF of year n – n – 1) averaged over
SMKA in April. The unit is %. (c) Time series of spatial correlation between CFSv2 for LM0-8 and the observation in April. (d) Time series of

standard deviation of spatial SCF biases between CFSv2 for LM0-8 and the observation in April. Unit: %.

a little smaller magnitude. For longer LMs, the SCF vari-
ations decrease rapidly, with the value greater than 15%
over some sporadic small areas in East Europe Plain and
south of Baikal for LM2 and less than 10% in most parts
of Eurasia for LM5.

As aforementioned, both the most intensive snowmelt
and model bias are located over 30∘–140∘E, 45∘–65∘N
(the domain with black dashed rectangles in Figure 3,
4). Thus, we define this area as snowmelt key area
(SMKA) representing the whole Eurasia to further study
the predictive skill in the SCF interannual variability in
snowmelt season. Figure 5(a) shows the time series of
April SMKA SCF in the CFSv2 and observation. The
CFSv2 for LM0 predicts the similar interannual variability

and climatological value to the observation. For longer
LMs, the CFSv2 gradually exaggerates the SMKA SCF
climatological value while underestimates the interannual
variability. Nevertheless, all the ACCs in the SMKA SCF
between the observation and CFSv2 reforecasts for LM0-4
are significant (R= 0.70, 0.52, 0.55, 0.42, 0.53, respec-
tively, exceeding the 95% confidence level). Namely, the
CFSv2 is capable of forecasting the interannual variation
5 months in advance despite the weaker-than-observed
intensity of variation for the LMs longer than LM2 (also
seen in Figure 12(b)).

The observation shows a downward trend
(−0.25% year−1) in April SCF and the CFSv2 for all

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 4071–4084 (2016)
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Figure 6. (a) First EOF mode of SCF (%) in the observation (a) and the first MSN EOF mode of CFSv2 forecasts over Eurasia in April for (c) LM0,
(e) LM2 and (g) LM5. PC1 in the observation (b) and PC1s in the CFSv2 for (d) LM0, (f) LM2 and (h) LM5. The solid black lines and dashed lines

in (d), (f) and (h) are the PC1s of the ensemble means and individual members, respectively.

LMs captures the trend well, except with stronger ampli-
tude for LM0-1 (−0.76/−0.51% year−1 for LM0/1). This
may be related with the robust decreasing trend of the
IC (−0.57% and −0.39 year−1 for March and February,
respectively in the CFSR). For longer LMs, the forecasted
downward trends become moderate and gradually close to
the observation.

To further assess the interannual variation, we calculate
the year-to-year (Y2Y) variation (Figure 5(b)). The CFSv2
is generally capable of forecasting the Y2Y variation for
LM0-1 (correlation coefficient of 0.59 and 0.40) but unable
to forecast it for longer LMs. The predictive skill varies
with the year. For example, the forecasted Y2Y varia-
tion is relatively realistic in 1986–1988 for LM0-2, but it
shows opposite anomalies to the observation in 1989 and
1999 even for LM0. In order to estimate the dependence

of predictive skill on years, we analyze the spatial cor-
relation between the observation and CFSv2 for LM0-8
(Figure 5(c)). The spatial correlation coefficients differ
from each year with relatively greater value and weaker
fluctuation after late-1990s, which has been verified with
the M–K test (not shown), indicating that the prediction
skill has been improved after late-1990s. In addition, the
time series of standard deviation of spatial SCF biases also
exhibit a relative low value after the late-1990s in com-
parison with before, further justifying the improvement of
prediction skill after late-1990s.

Figure 6(a) and (b) illustrate the leading EOF spatial
pattern and corresponding principal component (PC1) of
Eurasian April SCF in the observation. The prominent
feature in the EOF1 pattern is the intensive variation
in western Siberia (the maximum value greater than
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20%) and the obvious decreasing trend in the PC1.
Figure 6(c)–(h) exhibit the leading MSN EOF patterns
and corresponding PC1s of Eurasian SCF in the CFSv2
for LM0, LM2 and LM5. The leading predictable pattern
of CFSv2 for LM0 captures the vigorous variability in
western Siberia and the decreasing trend in the observed
PC1. The relationship between the PC1s of the observa-
tion and the CFSv2 ensemble mean for LM0 is significant
(R= 0.67, seen in Table 1). In addition, the spreads among
the members are quite small and all the 16 members show
significant correlation with the observation (Figure 6(d)).
The CFSv2 for LM2 also predicts the robust variation in
western Siberia although the magnitude is a little smaller
than that in the observation (Figure 6(e) and (f)). Fur-
thermore, all the correlation coefficients between the PC1
in the observation and the PC1s of the ensemble mean
and 12 of 16 members exceed the 95% confidence level,
indicating that the CFSv2 for LM2 generally reproduces
the variation in the observation (Table 1). Moreover, the
correlation between the year-to-year PC1s of the obser-
vation and CFSv2 ensemble means for LM0 and LM2
is also significant (exceeding the 99% confidence level),
indicating a good predictive skill of the CFSv2 in the
interannual variations of the leading pattern of SCF in
April for 3 months ahead. In addition, the CFSv2 does
not reproduce the moderate negative anomalies around
eastern Siberia in the observation for LM0 and LM2.
For longer LMs, the pattern biases between the CFSv2
and observation and the spreads among the 16 members
become considerable. The intensive variation in western
Siberia generally disappears in the CFSv2 for LM5 and
neither of the ensemble mean nor any members show
significant relationship with the observation in the PC1
(Figure 6(g) and (h)). The spreads among the 16 members

Table 1. Correlation coefficients between the observed PC1 and
forecasted PC1s of the ensemble mean (the second column) and
16 ensemble members (the other columns) in the CFSv2 for LM0

(top), LM2 (middle) and LM5 (bottom) in April.

LM Mean 16 members

LM0 0.67 0.65 0.67 0.67 0.72 0.55 0.59 0.57 0.56
0.62 0.63 0.49 0.48 0.75 0.65 0.58 0.56

LM2 0.76 0.7 0.51 0.5 0.57 0.62 0.49 0.37 0.7
0.35 0.69 0.47 0.66 0.48 0.64 0.53 0.65

LM5 0.36 0.3 −0.01 0.22 0.06 0.08 0.11 0.12 0.01
0.1 0.13 0.17 0.4 0.15 0.43 0.34 0.4

Bold numbers are above the 99% confidence level (Student’s t-test).

for LM5 are also quite large. Overall, the CFSv2 can
predict the leading pattern of Eurasian SCF 3 months in
advance. After 3 months, it shows poor prediction and
predictability in Eurasian SCF leading pattern.

5. Eurasian SCF prediction and predictability in
snowfall season

Figures 7 and 8 demonstrate the climatology and standard
deviation of Eurasian SCF in October in the observation
and its differences with the CFSv2 for LM0, LM2 and
LM5. As expected, the large SCF in the observation is
found in the high latitudes. The SCF, greater than 25%,
extends from north of 65∘N southward to near 60∘N in
October, with more than 75% in north of 65∘N whereas less
than 25% in south of 60∘N except the TP. The region with
large SCF gradient, 30∘–140∘E, 50∘–70∘N, is also with
high standard deviation (greater than 25%; Figures 7(a)
and 8(a)). The homogeneous positive biases of the SCF
in October, with the maximum greater than 10%, are also
located in the region with large gradient and variability,
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Figure 7. Same as Figure 3, but for October. The black dashed rectangle in (a)–(d) represent region of 30∘–140∘E, 50∘–70∘N defined as SFKA.
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Figure 8. Same as Figure 4, but for October. The black dashed rectangle in (a) is the same as Figure 7.

same as the condition in April. However, it is different from
April (Figures 7(b)–(d), 3(b)–(d)) that the biases vary
little as the LM increases. The observed standard devi-
ations over 30∘–140∘E, 50∘–70∘N are generally greater
than 25%. The CFSv2 for all of the LMs cannot predict
this large variation (Figure 8 (b)–(d)). As aforementioned,
we do not discuss the large biases around the TP.

Similarly, we define the area (30∘–140∘E, 50∘–70∘N)
with vigorous gradient, variability and bias as the snow-
fall key area (SFKA). The time series of the SFKA SCF
in the observation and CFSv2 for LM0, LM2 and LM5
in October are shown in Figure 9(a). The observed SFKA
SCF displays an obvious uptrend with linear trend of
0.73% year−1. However, the CFSv2 shows a weak down-
trend (−0.06, −0.10 and −0.10% year−1 for LM0, LM2
and LM5, respectively), incapable of reproducing the
observed uptrend. The reason for the discrepancy is not
clear and it will be discussed in Section 7.

The interannual variations in the CFSv2 are much
weaker than those in the observation (Figure 9(a)). The
causes for the weak variability might come from the much
weaker variability of October precipitation and temper-
ature (further discuss about it in Section 6). Actually,
previous studies reported that the weaker-than-observed
variation of SCF is common phenomenon in most numer-
ical models (Hardiman et al., 2008; Riddle et al., 2013).
With the forecasted opposite trend and damped variabil-
ity, the CFSv2 shows insignificant relationship with the
observed SFKA SCF for all LMs. Nevertheless, the corre-
lation coefficient between the detrended/Y2Y SFKA SCF
in the CFSv2 for LM0 and the observation is significant
(R= 0.44/0.50, exceeding the 95% confidence level). This

feature suggests the probably predictive skill in the inter-
annual variation. Figure 9(c)–(d) displays the time series
of spatial correlation coefficients and standard deviation of
spatial SCF biases. Same as in April, the CFSv2 exhibits
higher and more stable prediction and predictability after
late-1990s. We will discuss the phenomenon in Section 7.

Figure 10 illustrates the EOF1 of Eurasian October SCF
in the observation and the MSN EOF1 in the CFSv2
for LM0, LM2 and LM5 and their corresponding PC1s.
The observed Eurasian SCF exhibits homogenous varia-
tion over most parts of Eurasia, with the maximum value
greater than 15% over SFKA (Figure 10(a)). The CFSv2
simulates the similar pattern with the observation but with
much weaker magnitude even for LM0 (Figure 10(c), (e)
and (g)). The PC1 in the observation exhibits an obvious
upward trend, whereas none of the PC1s in the CFSv2 for
LM0, LM2 and LM5 reproduce it successfully. In addition,
all the correlation coefficients between the PC1s of the
observation and CFSv2 are insignificant and the spreads
among the 16 members in October are much larger than
that in April (Figure 6(d), (f) and (h)). Overall, in contrast
with the snowmelt season, the CFSv2 shows a better pre-
dictive skill in the climatology but a worse predictive skill
and predictability in the trend, interannual variation and
variability of Eurasian SCF in snowfall season.

6. Plausible causes for the prediction and
predictability

As described above, the CFSv2 is able to predict the
Eurasian SCF interannual variation in April ahead of
several months whereas it fails to simulate that in October.
Because the temperature and precipitation affect snow
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Figure 9. Same as Figure 5, but for October.

accumulation and ablation (Koren et al., 1999), we attempt
to explain these SCF biases by evaluating the simulation
for low tropospheric temperature (LTT) and precipitation
in the CFSv2. We mainly focus on the correlation between
their biases and comparison of their climatological value
and variability.

Figure 11 shows the correlation coefficients of the SCF
biases with precipitation, 2-m temperature (T2m) and
850 hPa temperature (T850) biases in the CFSv2 for LM0
in April and October. In April, the SCF biases exhibit
significant negative relationship with the forecasted LTT
biases over large parts of SMKA (Figure 11(c) and (e)).
In comparison, the relationship with precipitation biases
is much weaker. From Figure 11(a), the significant
correlation only appears over some sporadic parts of the

SMKA. In October, both the biases of LTT and precipi-
tation have significant relationship with the SCF biases
(Figure 11(b), (d) and (f)). In addition, the SCF biases for
longer LMs show similar relationship with the precipita-
tion and LTT biases (figure not shown). These features
suggest that the prediction and predictability of April SCF
in the CFSv2 is primarily related to the predictive skill
in LTT whereas the predictive skill in October SCF is
associated with both the LTT and precipitation. It confirms
the results of other studies that the model accumulates
snow during precipitation events with surface temperature
below freezing whereas it melts snow mostly dependent
on the surface temperature (Frei et al., 2003). We also
demonstrate that the prediction skill of LTT is greater
than precipitation in the CFSv2. As shown in Table 2,
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the correlation coefficients between the observation and
CFSv2 for LM0-8 of T2m and T850 are generally larger
than precipitation. It is capable of forecasting the LTT
interannual variation ahead of 2 months while it fails to
simulate that of precipitation. Overall, the poor prediction
skill for precipitation and its close relationship with Octo-
ber SCF may interpret the worse prediction skill in the
interannual variability of SCF in October than in April.

We further investigate the biases of the SCF, precip-
itation, T2m and T850 over SMKA in April and over
SFKA in October (Figure 12). The CFSv2 produces
cooler and wetter atmosphere in the CFSv2, which pre-
vents from snowmelt but conduces to snow accumula-
tion, corresponding to the overestimation of SCF in both
seasons (Figure 12(a)). The negative biases of LTT and
positive biases of precipitation in April is much larger than

those in October, which could interpret the general larger
biases of SCF in April. Because the SCF biases show a
more significant relationship with the LTT biases than with
the precipitation biases in April, the more dominant effect
of temperature than the precipitation is accompanied by the
gradually larger SCF biases with longer LMs (black bars
in Figure 12(a)). In October, the biases of SCF exhibit a
decrease from LM1 to LM4 and an increase with longer
LMs for LM5–LM8, which is consistent with the evolu-
tion of LTT biases (gray bars in Figure 12(a), (e), (g)).
On the other hand, the forecasted standard deviation
biases of LTT and precipitation are generally negative
(Figure 12(d), (f) and (h)) in both seasons, which are
consistent with the underestimated SCF variability in the
CFSv2 (Figure 12(b)). Noted that the underestimation of
precipitation variability in October is worse than in April
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Figure 11. Correlation coefficients between SCF biases and precipitation (a, b), 2-m temperature (c, d) and 850 hPa temperature (e, f) biases of
CFSv2 for LM0 in April (a, c, e) and October (b, d, f). The bold black line is the contour exceeding the 95% confidence level (Student’s t-test).

Table 2. Correlation coefficients between forecasted and observed precipitation, T2m and T850 in April and October for LM0-8.

LM0 LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8

April Prc 0.03 0.20 0.07 0.11 0.16 0.19 0.12 0.03 −0.01
T2m 0.58 0.50 0.23 0.27 0.34 0.23 0.21 0.14 0.09
T850 0.57 0.44 0.14 0.24 0.30 0.17 0.17 0.09 0.09

October Prc −0.02 −0.06 0.10 −0.20 0.25 0.25 0.22 −0.32 0.42
T2m 0.63 0.38 0.20 0.18 0.23 0.36 0.19 0.24 0.27
T850 0.60 0.34 0.20 0.15 0.29 0.43 0.15 0.26 0.05

Bold numbers are above the 95% confidence level (Student’s t-test).

(Figure 12(d)), which probably causes the worse underes-
timation of October SCF interannual variability than April
SCF (Figure 12(b)).

7. Summary and discussion

In this study, the prediction and predictability of Eurasian
SCF in terms of climatology, the temporal–spatial
variation in snowmelt and snowfall season has been
assessed using the CFSv2 reforecasts. The CFSv2 rea-
sonably reproduces the seasonal cycle and climatology

of the observed Eurasia SCF, with positive biases in
April–October and negative biases in November–
February. Because the intensive variability generally
occurs in the snowmelt and snowfall seasons, this study
focuses on the prediction and predictability of Eurasian
SCF in the two seasons.

In the snowmelt season, the CFSv2 is generally able
to predict the interannual variability, long-term trend and
leading pattern of Eurasian SCF ahead of 3 months. For
longer LMs, the biases of SCF in the SFKA increase
dramatically and the CFSv2 is gradually incapable of the
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Figure 12. Mean biases (left panel) of (a) SCF (%), (c) Precipitation (mm-day−1), (e) 2-m temperature (∘C) and (g) 850 hPa temperature (∘C) and
their standard deviation biases (right panel, (b), (d), (f) and (h)) in April (black bar) and October (gray bar) for LM0-8.

interannual variation. Distinct from the snowmelt season,
the biases in snowfall season vary little with the LM.
The observed Eurasian SCF in October shows an upward
tendency whereas the CFSv2 exhibits downward trends for
all LMs. In addition, the CFSv2 simulates much weaker
interannual variation compared with the observation. As a
consequence, the CFSv2 is incapable of reproducing the
leading pattern of Eurasian SCF in October. Overall, the
CFSv2 exhibits a better predictive skill for Eurasian SCF
in the snowmelt season than in the snowfall season except
the climatological value. The predictive skills in both the
snowmelt and snowfall season are abruptly improved and
become much greater and stable after late-1990s than
before. It is probably related with the change of snowpack
initialization in 1997 in the model (Ek et al., 2003; Saha
et al., 2010) and the higher temporal and spatial resolution
product from 1997 which Rutgers observation bases on
(Ramsay, 1998).

The model biases of SCF are strongly related with LTT
and precipitation biases in both the snowmelt and snowfall
seasons. The joint impact of the underestimated LTT and
overestimated precipitation in the CFSv2 reasonably inter-
prets the exaggerative SCF in the two seasons. Meanwhile,

the CFSv2 simulates weaker variations of the LTT and pre-
cipitation in comparison with the observation generally,
which may be the important factor for the underestimation
of SCF interannual variability. The variability biases of
precipitation in October and its relationship with SCF
biases are more pronounced than those in April. In addi-
tion, the CFSv2 has poorer prediction skill in precipitation
than LTT. As a result, the CFSv2 shows a worse predictive
skill in the SCF interannual variation in October than in
April.

The October SCF in the observation shows obvious
upward trend while the forecasted October SCF in the
CFSv2 for all LMs exhibits downward tendencies. Con-
sidering the important effect of the LTT and precipitation
on the SCF in snowfall season, we further explore the
tendency of October T2m, T850 and precipitation in the
observation and the CFSv2. All these variables do not
exhibit significant tendency (figure not shown). Therefore,
one possible explanation is that the upward tendency in
the observation is realistic whereas the CFSv2 is inca-
pable of reproducing it. Assumed that the IC plays a
dominant effect on the forecasted Eurasian SCF even
after 9 months, the CFSv2, running from these IC with
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decreasing trend, consequently predicts decreasing trend.
In fact, the SCF in January–September from CFSR shows
consistent decreasing tendency, which may account for the
forecasted downtrend of October SCF in the CFSv2. How-
ever, we cannot exclude the possibility that the upward
tendency in the observed Eurasian SCF is artificial. The
coarse weekly product by trained NOAA meteorologists
was officially replaced in the late 1990s with a daily
Interactive Multisensor Snow and Ice Mapping System
(IMS) product (http://climate.rutgers.edu/snowcover/),
which may cause the abrupt increasing in late-1990s of
Eurasian SCF in October. Using other four independent
snow cover datasets, Brown and Derksen (2013) argued
that the increasing trend of October snow cover from
NOAA dataset is caused by the inconsistence of the
mapping product. The features, especially the tendency,
of snow cover in October deserve further investigation.

Acknowledgements

This study was jointly supported by the National Natural
Science Foundation of China (41205059, 41221064 and
41375092), the National Basic Research Program of China
(Grant 2014CB953900), the Special Fund for Public Wel-
fare Industry (Meteorology) (GYHY201206017) and the
Basic Research Fund of Chinese Academy of Meteorolog-
ical Sciences (2015Z001).

References

Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J,
Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J,
Arkin P, Nelkin E. 2003. The version 2 Global Precipitation Clima-
tology Project (GPCP) monthly precipitation analysis (1979-present).
J. Hydrometeorol. 4: 1147–1167.

Barnett TP, Dümenil L, Schlese U, Roeckner E, Latif M. 1989. The effect
of Eurasian snow cover on regional and global climate variations.
J. Atmos. Sci. 46: 661–686.

Berrisford P, Dee D, Fielding K, Fuentes M, Kållberg P, Kobayashi S,
Uppala S, Simmons A. 2009. The ERA-Interim archive. Era Report
Series 1, Technical Report, European Centre for Medium Range
Weather Forecasts, Berkshire, UK, 23 pp.

Brands S, Manzanas R, Gutiérrez JM, Cohen J. 2012. Seasonal pre-
dictability of wintertime precipitation in Europe using the snow
advance index. J. Clim. 25(12): 4023–4028.

Brown RD, Derksen C. 2013. Is Eurasian October snow cover
extent increasing? Environ. Res. Lett. 8(2): 279–288, doi:
10.1088/1748-9326/8/2/024006.

Chen H, Duo Q, Bei X. 2013. Influence of snow melt anomaly over the
mid–high latitudes of the Eurasian continent on summer low temper-
atures in northeastern China. Chin. J. Atmos. Sci. 37(6): 1337–1347
(in Chinese).

Clark MP, Serreze MC. 2000. Effects of variations in East Asian snow
cover on modulating atmospheric circulation over the North Pacific
Ocean. J. Clim. 13: 3700–3710.

Clark MP, Serreze MC, Robinson DA. 1999. Atmospheric controls on
Eurasian snow extent. Int. J. Climatol. 19: 27–40.

Cohen J, Jones J. 2011. A new index for more accurate winter predic-
tions. Geophys. Res. Lett. 38(21): 759–775.

Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V,
Gayno G, Tarpley JD. 2003. Implementation of Noah land surface
model advances in the National Centers for Environmental Prediction
operational mesoscale Eta model. J. Geophys. Res. 108: 8851, doi:
10.1029/2002JD003296.

Fan Y, van den Dool H. 2008. A global monthly land surface air
temperature analysis for 1948–present. J. Geophys. Res. 113: D01103,
doi: 10.1029/2007JD008470.

Frei A, Miller JA, Robinson DA. 2003. Improved simulations of snow
extent in the second phase of the Atmospheric Model Intercompar-
ison Project (AMIP-2). J. Geophys. Res. 108(D12): 975–984, doi:
10.1029/2002JD003030.

Gong G, Entekhabi D, Cohen J. 2003. Modeled Northern Hemisphere
winter climate response to realistic Siberian snow anomalies. J. Clim.
16: 3917–3931.

Hardiman SC, Kushner PJ, Cohen J. 2008. Investigating the abil-
ity of general circulation models to capture the effects of Eurasian
snow cover on winter climate. J. Geophys. Res. 113: D21123, doi:
10.1029/2008JD010623.

Hu Z-Z, Kumar A. 2014. Prediction skill of North Pacific vari-
ability in NCEP Climate Forecast System version 2: impact
of ENSO and beyond. J. Clim. 27(11): 4263–4272, doi:
10.1175/JCLI-D-13-00633.1.

Huang B. 2004. Remotely forced variability in the tropical Atlantic
Ocean. Clim. Dyn. 23(2): 133–152.

Kendall MG. 1975. Rank correlation methods. Charles Griffin, London.
Kim HM, Webster PJ, Curry JA. 2012. Seasonal prediction skill of

ECMWF System 4 and NCEP CFSv2 retrospective forecast for
the Northern Hemisphere winter. Clim. Dyn. 39: 2957–2973, doi:
10.1007/s00382-012-1364-6.

Koren V, Schaake J, Mitchell K, Duan QY, Chen F, Baker JM. 1999.
A parameterization of snowpack and frozen ground intended for
NCEP weather and climate models. J. Geophys. Res. 104(D16):
19569–19585.

Kug JS, Kang IS, Choi DH. 2008. Seasonal climate predictability with
tier-one and tier-two prediction systems. Clim. Dyn. 31: 403–416.

Kumar KK, Hoerling M, Rajagopalan B. 2005. Advancing Indian
monsoon rainfall predictions. Geophys. Res. Lett. 32: L08704, doi:
10.1029/2004GL021979.

Mann HB. 1945. Nonparametric test against trend. Econometrica 13(3):
245–259.

Mo KC, Shukla S, Lettenmaier DP, Chen LC. 2012. Do climate forecast
system (CFSv2) forecasts improve seasonal soil moisture prediction?
Geophys. Res. Lett. 39: L23703, doi: 10.1029/2012GL053598.

Orsolini YJ, Senan R, Balsamo G, Doblas-Reyes FJ, Vitart F,
Weisheimer A, Carrasco A, Benestad RE. 2013. Impact of snow
initialization on sub-seasonal forecasts. Clim. Dyn. 41(7–8):
1969–1982, doi: 10.1007/s00382-013-1782-0.

Peng P, Barnston AG, Kumar A. 2013. A comparison of skill between
two versions of the NCEP climate forecast system (CFS) and CPC’s
operational short-lead seasonal outlooks. Weather Forecast. 28:
445–462.

Ramsay BH. 1998. The interactive multisensor snow and ice mapping
system. Hydrol. Processes 12: 1537–1546.

Riddle EE, Butler AH, Furtado JC, Cohen J, Kumar A. 2013. CFSv2
ensemble prediction of the wintertime Arctic Oscillation. Clim. Dyn.
41: 1099–1116, doi: 10.1007/s00382-013-1850-5.

Robinson DA, Dewey KF, Heim RR. 1993. Global snow cover monitor-
ing: an update. Bull. Am. Meteorol. Soc. 74: 1689–1696.

Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R,
Woollen J, Behringer D, Liu H, Chuang H, Juang HMH, Sela J, Iredell
M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek M, Meng
J, Wei H, Yang R, Lord S, Dool HVD, Kumar A, Wang W, Long C,
Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie
PP, Chen MY, Zhou ST, Higgins W, Zou CZ, Liu Q, Chen Y, Han
Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M. 2010. The
NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc.
91: 1015–1057, doi: 10.1175/2010Bams3001.1.

Saha SK, Pokhrel S, Chaudhari HS. 2013. Influence of Eurasian snow
on Indian summer monsoon in NCEP CFSv2 freerun. Clim. Dyn.
41(7–8): 1801–1815, doi: 10.1007/s00382-01201617-4.

Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D,
Hou YT, Chuang H, Iredell M, Ek M, Meng J, Yang R, Mendez MP,
van den Dool H, Zhang Q, Wang W, Chen M, Becker E. 2014. The
NCEP Climate Forecast System version 2. J. Clim. 27: 2185–2208,
doi: 10.1175/JCLI-D-12-00823.1.

Singh KK, Mishra VD, Garg RK. 2007. Microwave response of seasonal
snow-cover measured by using a ground-based radiometer at 6.93 and
18.7 GHz frequencies and at dual polarization. J. Indian Soc. Remote
Sens. 35(3): 243–251.

Venzke S, Allen MR, Sutton RT, Rowell DP. 1999. The atmospheric
response over the North Atlantic to decadal changes in sea surface
temperature. J. Clim. 12: 2562–2584.

Wang B, Ding QH, Fu XH, Kang IS, Jin K, Shukla J, Doblas-Reyes F.
2005. Fundamental challenge in simulation and prediction of summer
monsoon rainfall. Geophys. Res. Lett. 32: L15711.

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 4071–4084 (2016)
on behalf of the Royal Meteorological Society.



4084 Q. HE et al.

Wang W, Huang MP, Weaver SJ, Kumar A, Fu XH. 2012. MJO pre-
diction in the NCEP Climate Forecast System version 2. Clim. Dyn.
42(9–10): 2509–2520, doi: 10.1007/s00382-013-1806-9.

Wang W, Chen M, Kumar A. 2013. Seasonal prediction of Arctic Sea ice
extent from a coupled dynamical forecast system. Mon. Weather Rev.
141: 1375–1394, doi: 10.1175/MWR-D-12-00057.1.

Wu R, Kirtman BP. 2007. Observed relationship of spring and summer
East Asian rainfall with winter and spring Eurasian snow. J. Clim.
20(7): 1285–1304.

Wu B, Yang K, Zhang R. 2009. Eurasian snow cover variability and its
association with summer rainfall in China. Adv. Atmos. Sci. 26: 31–44.

Zhang R, Wu B, Zhao P, Han J. 2008. The decadal shift of the summer
climate in the late 1980s over eastern China and its possible causes.
Acta Meteorol. Sin. 22: 435–445.

Zhang R, Wu B, Han J, Zuo Z. 2013. Effects on summer monsoon and
rainfall change over China due to Eurasian snow cover and ocean
thermal conditions. In Climate Change – Realities, Impacts Over Ice
Cap, Sea Level and Risks, Singh BR (ed). InTech: Rijeka, Croatia,
227–250.

Zuo Z, Yang S, Wang W, Kumar A, Xue Y, Zhang R. 2011. Rela-
tionship between anomalies of Eurasian snow and southern China
rainfall in winter. Environ. Res. Lett. 6: 045402, doi: 10.1088/1748-
9326/6/4/045402.

Zuo Z, Zhang R, Wu B. 2012a. Inter-decadal variations of springtime
rainfall over southern China mainland for 1979–2004 and its relation-
ship with Eurasian snow. Sci. China Earth Sci. 55(2): 271–278.

Zuo Z, Zhang R, Wu B, Rong X. 2012b. Decadal variability in spring-
time snow over Eurasia: relation with circulation and possible influ-
ence on springtime rainfall over China. Int. J. Climatol. 32(9):
1336–1345.

Zuo Z, Yang S, Hu ZZ, Zhang R, Wang W, Huang B, Wang F. 2013.
Predictable patterns and predictive skills of monsoon precipitation
in Northern Hemisphere summer in NCEP CFSv2 reforecasts. Clim.
Dyn. 40: 3071–3088, doi: 10.1007/s00382-013-1772-2.

Zuo Z, Yang S, Zhang R, Xiao D, Guo D, Ma L. 2014. Response of
summer rainfall over China to spring snow anomalies over Siberia in
the NCEP CFSv2 reforecast. Q. J. R. Meteorol. Soc. 141: 939–944,
doi: 10.1002/qj.2413.

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 4071–4084 (2016)
on behalf of the Royal Meteorological Society.


